top of page

OxML 2021
9-18 Aug, 2021

AI for Global Goals, in partnership with CIFAR and the University of Oxford's Deep Medicine program successfully organised a number of schools in 2021, including

  • ML Fundamentals 2021

  • ML in Health & Medicine

  • ML for Social Good 2021 

​

The schools covered multiple topics such as:

  • Representation learning, vision, NLP, reinforcement learning, …

  • Statistical ML, bayesian ML, Gaussian processes, causal ML, …

  • Medical imaging, EHR, genomics, …

  • And more topics in finance, sustainability, …

 

These schools were very competitive, and we only could accept the top ~5% of the applicants we received from 118 countries, which led to

  • 500 candidates from 60 countries

  • 42% female; 53% from underrepresented countries in AI

  • 77% from academia (students and staff/postdocs/faculty); 98% with a postgrad degree.

2021 event

9-18 August, 2021

PROGRAM COMMITEE 2021

MA%20head_edited.png
Mona Alinejad
General Chair

Founder and CEO,

AI for Global Goals

Tom-%2520BW_edited_edited.jpg
Thomas Nichols
Area Chair - Statistical ML

Professor of Neuroimaging Statistics University of Oxford

Reza_edited_edited_edited_edited_edited_
Reza Khorshidi
Program Chair

Investigator in ML & Medicine at the University of Oxford,

Chief Scientist at AIG 

KAZEM_edited_edited_edited_edited_edited
Kazem Rahimi
Program Chair

Professor of Cardiovascular Medicine University of Oxford

yu%2520yu_edited_edited.jpg
Yu Yu
Area Chair - AI for Good

Director of Data Science at

BNY Mellon

moez%25252525202_edited_edited_edited_ed
Moez Draief
Area Chair - AI for Good

Chief Scientist & VP of Data Science/Engineering at Capgemini

KAro_edited.jpg
Karo Moilanen
Area Chair - NLP

Global Head of NLP & Science Director at AIG 

selfie_edited_edited_edited.jpg
Yaodong Yang
Area Chair - ML Fundamentals 

Assistant Professor at King's College London

Oxford Machine Learning summer school (OxML 2021) gathered some of the world-renowned professors and scientists (incl. Prof Bengio, a Turing award winner) to deliver the best-in-class ML courses for OxML participants. The school consisted of three main tracks, each covering an extensive range of topics:

​

  1. Representation learning and statistical ML:

    • ​Causal representation learning 

    • Geometrical deep learning 

    • RL and computer vision 

    • Advanced topics in representation learning 

    • Probabilistic causal ML

    • Bayesian ML

    • Gaussian processes

    • epresentation learning for causal inference 

  2. NLP:

    • ​Multi-lingual NLP​

    • Bias & ethics in NLP

    • Fact-checking & misinformation detection 

    • Large-scale language models

    • Common-sense reasoning 

    • Sentiment/opinion mining  

    • Scientific reviewing

  3. ML in healthcare:

    • ​​ML for survival and hazard models

    • ML for medical imaging

    • ML for Electronic Health Records (EHR)

    • Computational Pathology

REPRESENTATION LEARNING & STATISTICAL ML SPEAKERS

YoshuaBengio_web_credMaryseBoyce_2214_ed
Yoshua Bengio

Université de Montreal, Mila, IVADO, CIFAR

michael_edited_edited_edited_edited.jpg
Michael Bronstein

Imperial College London,

Twitter

Andrea%2520vedaldi_edited_edited.jpg
Andrea Vedaldi

Oxford University, Facebook AI 

Screenshot%2525202021-05-05%252520at%252
Melanie Mitchell

Santa Fe Institute

james-hensman_sm_edited_edited_edited_ed
James Hensman

Amazon

Cheng%25252520Zhang_edited_edited_edited
Cheng Zhang

Microsoft

Ali%20Eslami_edited_edited.jpg
Ali Eslami

DeepMind

robin_evans_edited_edited.jpg
Robin Evans

Oxford University

silvia_edited_edited_edited_edited.jpg
Silvia Chiappa

DeepMind

NATURAL LANGUAGE PROCESSING (NLP) SPEAKERS

Rada.jpg
Rada Mihalcea

University of Michigan

Luke%20Zettlemoyer_portrait_edited.jpg
Luke Zettlemoyer

University of Washington

sebastian_ruder_profile_photo_square_edi
Sebastian Ruder

DeepMind

Screenshot%202021-04-06%20at%2011.55_edi
Yulan He

University of Warwick

prof_pic.jpg
Andreas Vlachos

University of Cambridge

Screenshot%202021-03-29%20at%2017.53_edi
Yue Zhang 

Westlake University

Pengfei_edited_edited_edited.jpg
Pengfei Liu

Carnegie Mellon University

ML IN HEALTHCARE SPEAKERS

KAZEM_edited_edited_edited_edited_edited
Kazem Rahimi

Oxford University

Jorge_graybg_edited.jpg
Jorge Cardoso

King's College London

Reza_edited_edited_edited_edited_edited_
Reza Khorshidi

Oxford University, AIG 

Jens_edited_edited.jpg
Jens Rittscher 

Oxford University

Screenshot%2525202021-05-22%252520at%252
Russ Greiner

University of Alberta, CIFAR

Narges_pic.jpeg
Narges Razavian

New York University

Lea_Goetz_colour_edited.jpg
Lea Goetz

GSK.ai

OxML21

AI FOR SOCIAL GOOD 2021

AI for social good 2021, offered a series of lectures by some of the top scientists and industry leaders on the application of machine learning for SDGs such as:

​

  • ML in financial services 

  • ML for climate action 

  • ML for energy efficiency

  • Computational sustainability

  • ML for water resources 

AI FOR SOCIAL GOOD SPEAKERS

Thomas%20dietterich_edited_edited.jpg
adam-wierman_edited.jpg
Naren_edited_edited.jpg
renyuan_edited.jpg
Screenshot%2525202021-03-12%252520at%252
Thomas Dietterich
Adam Wierman
Naren Ramakrishnan
David Rolnick
Renyuan Xu

Oregon State University

Caltech

McGill University, Mila

Virginia Tech.

Oxford University

deniz_web_large_edited_edited.jpg
Deniz Gunduz

Imperial College London

Dimitris.png
Dimitris Vlitas

Accenture 

University of Toronto

Screenshot 2021-04-21 at 09.39.58.png
Daniele Magazzeni

J.P. Morgan,

Kings College London

9569429427_e266fb54aa_k_edited_edited.jp
Jacob Abernethy

Georgia Institute of Technology

AI fo Good 21

ML FUNDAMENTALS 2021
20-21 JULY, 2021

ML fundamentals 2021 aimed to provide those participants who didn't have the necessary Computer Science/Stats backgrounds or just needed to refresh their memory, with an in depth introduction to the ML basics. Some of the topics covered during this track were:

​

  • Deep Learning Basics: Deep Neural Net, Resnet, Transformer, …

  • ML and Data Science Basics: Linear regression, Logistic regression,PCA, Boosting, …

  • ML system basics: Automatic differentiation, Accelerators, Computational Graph, Graph Optimisation, Distributed Training, Model Serving, ...

  • Probabilistic Modelling Basics: Bayesian stats, VAE, GP, Bayesian Optimisation, ...

​

ML FUNDAMENTALS SPEAKERS

Ammar_edited_edited_edited_edited.jpg
Oana_edited_edited.jpg
Luo_edited_edited_edited.jpg
Yikuan Li.jpg
Oana Cocarascu
Haitham Ammar 
Luo Mai
Yikuan Li

Kings College London

Huawei, UCL

University of Edinburgh

Oxford University

ML Fundamentals 21

2021 SPONSORS

GSK_L_RGB.png
Accenture-logo.png
DM_RGB_Logo_Blue400_2x-100.jpg
Ocado%20Technology_edited.jpg
2021 sponsors
bottom of page