OxML 2023
8–16 July, 2023
Oxford Mathematical Institute & Online
![IMG_0477](https://static.wixstatic.com/media/9b9d14_eeb65ff2bf174e5993324e4e4eb14d51~mv2.png/v1/fill/w_980,h_530,al_c,q_90,usm_0.66_1.00_0.01,enc_avif,quality_auto/9b9d14_eeb65ff2bf174e5993324e4e4eb14d51~mv2.png)
![](https://static.wixstatic.com/media/9b9d14_72c75875b2114a46891a6b110580d33f~mv2.jpg/v1/fill/w_980,h_613,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/9b9d14_72c75875b2114a46891a6b110580d33f~mv2.jpg)
![Dr Karo Moilanen](https://static.wixstatic.com/media/9b9d14_5919434dc879492abbf6fc935a1a8aba~mv2.jpg/v1/fill/w_980,h_655,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/9b9d14_5919434dc879492abbf6fc935a1a8aba~mv2.jpg)
![IMG_0477](https://static.wixstatic.com/media/9b9d14_eeb65ff2bf174e5993324e4e4eb14d51~mv2.png/v1/fill/w_980,h_530,al_c,q_90,usm_0.66_1.00_0.01,enc_avif,quality_auto/9b9d14_eeb65ff2bf174e5993324e4e4eb14d51~mv2.png)
OxML 2023 PROGRAM COMMITEE
OxML 2023 SPEAKERS
ML x HEALTH
![Kutyniok-Gitta_new_edited.jpg](https://static.wixstatic.com/media/9b9d14_0b99d844f28c46dca834eb86438f42b9~mv2.jpg/v1/fill/w_125,h_125,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/Kutyniok-Gitta_new_edited.jpg)
Gitta Kutyniok
Professor of Applied Maths
University of Munich
​
![Cho_Kyunghyun_edited.jpg](https://static.wixstatic.com/media/9b9d14_87272461692b4f39883d353d6bffa633~mv2.jpg/v1/crop/x_20,y_0,w_660,h_700/fill/w_120,h_127,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/Cho_Kyunghyun_edited.jpg)
Kyunghyun Cho
Associate Prof. of computer science & data science, NYU
Senior Director of Frontier Research, Genentech
CIFAR Fellow
​
![miera_edited.jpg](https://static.wixstatic.com/media/9b9d14_b6d8f211fa284690862f042d803b2ed5~mv2.jpg/v1/fill/w_130,h_130,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/miera_edited.jpg)
Mireia Crispin
Lecturer in Integrated Cancer Medicine
University of Cambridge
​
![Louis-Philippe Morency](https://static.wixstatic.com/media/9b9d14_6d6da9025e724c7cbce3cdc39fb23666~mv2.jpg/v1/fill/w_140,h_128,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/Louis-Philippe%20Morency.jpg)
Louis-Philippe Morency
Prof. of Computer Science
Carnegie Mellon Uni.
![Cheng_edited.png](https://static.wixstatic.com/media/9b9d14_8afe54eabce14632a33f122f9e592daf~mv2.png/v1/crop/x_23,y_0,w_583,h_583/fill/w_130,h_130,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/Cheng_edited.png)
Cheng Zhang
Principal Researcher
Microsoft Research
![Jorge_graybg.png](https://static.wixstatic.com/media/9b9d14_c71c97e7283444a284fa7edb3aecf7ac~mv2.png/v1/crop/x_0,y_24,w_1086,h_1086/fill/w_130,h_130,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/Jorge_graybg.png)
Jorge Cardoso
Reader in Artificial Medical Intelligence
King's College London
![Munmun De Choudhury](https://static.wixstatic.com/media/9b9d14_2ad9c24c9d054f3e801d64f952a99cee~mv2.jpg/v1/crop/x_0,y_11,w_150,h_159/fill/w_105,h_111,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/Munmun%20De%20Choudhury.jpg)
Munmun De Choudhury
Associate Prof. of Interactive Computing
Georgia Tech
​
​
![images_edited.jpg](https://static.wixstatic.com/media/9b9d14_bedb1d25e98e40d184355a0d6416e1ab~mv2.jpg/v1/crop/x_6,y_0,w_189,h_200/fill/w_115,h_122,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/images_edited.jpg)
Pietro Liò
Professor of Computer Science
University of Cambridge​
![1538738417907_edited_edited.jpg](https://static.wixstatic.com/media/9b9d14_cb19a1884c334a399b9968526c992d99~mv2.jpg/v1/crop/x_100,y_0,w_486,h_514/fill/w_115,h_122,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/1538738417907_edited_edited.jpg)
Ravi Patel
Advanced AI Scientist
Benevolant AI​
![KAZEM_edited_edited_edited_edited.jpg](https://static.wixstatic.com/media/9b9d14_2150b14779634773b47f77a8a5558bfe~mv2.jpg/v1/crop/x_9,y_0,w_630,h_630/fill/w_135,h_135,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/KAZEM_edited_edited_edited_edited.jpg)
Kazem Rahimi
Professor of Cardiovascular Medicine
University of Oxfor
![ali eslami_edited.jpg](https://static.wixstatic.com/media/9b9d14_5f818cd5709343edbc65232e44879bf5~mv2.jpg/v1/crop/x_0,y_305,w_1870,h_1999/fill/w_120,h_128,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/ali%20eslami_edited.jpg)
Ali Eslami
Research Scientist
Google DeepMind
![profile_edited.jpg](https://static.wixstatic.com/media/9b9d14_9cf8fe7b543f412097cab2e4c56f1295~mv2.jpg/v1/crop/x_167,y_0,w_2833,h_3000/fill/w_115,h_122,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/profile_edited.jpg)
Christian Rupprecht
Lecturer in Computer Vision
University of Oxford​
MLx FINANCE & NLP
![Rama Cont_edited.jpg](https://static.wixstatic.com/media/9b9d14_6f1811f25b0142b492d7ace6b59c1c32~mv2.jpg/v1/crop/x_16,y_0,w_301,h_300/fill/w_125,h_125,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/Rama%20Cont_edited.jpg)
Rama Cont
Professor of Mathematical Finance
University of Oxford​
![Stefan Zohren_edited.jpg](https://static.wixstatic.com/media/9b9d14_87a2d1ddea8f4abc85e8bc7d6e990fda~mv2.jpg/v1/crop/x_0,y_0,w_280,h_280/fill/w_125,h_125,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/Stefan%20Zohren_edited.jpg)
Stefan Zohren
Director of Oxford-Man Institute
University of Oxford
​
![Blanka Horvath_edited.jpg](https://static.wixstatic.com/media/9b9d14_11378dbdfb4045acac7188c65f298e9e~mv2.jpg/v1/crop/x_0,y_0,w_270,h_298/fill/w_110,h_121,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/Blanka%20Horvath_edited.jpg)
Blanka Horvath
Professor in Oxford Math Finance Group
University of Oxford​
![Svetlana Bryzgalova_edited_edited.jpg](https://static.wixstatic.com/media/9b9d14_89bf82c2d98f4aef89604bc16f02d258~mv2.jpg/v1/crop/x_0,y_12,w_535,h_535/fill/w_125,h_125,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/Svetlana%20Bryzgalova_edited_edited.jpg)
Svetlana Bryzgalova
Assistant Professor of Finance
London Business School
​
![mihai_edited_edited_edited.jpg](https://static.wixstatic.com/media/9b9d14_341b2c22c61e4678bfe863476b83d438~mv2.jpg/v1/crop/x_29,y_0,w_634,h_651/fill/w_120,h_123,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/mihai_edited_edited_edited.jpg)
Mihai Cucuringu
Associate Professor of Statistics
University of Oxford
​
![He_edited.png](https://static.wixstatic.com/media/9b9d14_8623ba9be0e340eeb5ac628538dfbe38~mv2.png/v1/crop/x_6,y_0,w_553,h_553/fill/w_125,h_125,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/He_edited.png)
He He
Assistant Professor of computer science
NYU​
![Screenshot 2022-11-24 at 13.13_edited.jpg](https://static.wixstatic.com/media/9b9d14_62b2921028fc46c6bd58fb3b3e04d95e~mv2.jpg/v1/crop/x_20,y_0,w_1237,h_1235/fill/w_125,h_125,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/Screenshot%202022-11-24%20at%2013_13_edited.jpg)
Rahul Savani
Professor of Computer Science
University of Liverpool
![1546841329688_edited.jpg](https://static.wixstatic.com/media/9b9d14_14b0304a1a994fba8f2f0d0e4348bdee~mv2.jpg/v1/fill/w_125,h_125,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/1546841329688_edited.jpg)
Edward Grefenstette
Head of ML at Cohere,
Honorary Professor at UCL
![Diyi_Yang_edited.jpg](https://static.wixstatic.com/media/9b9d14_7ba75f4cfc0b404c8942490a61402300~mv2.jpg/v1/crop/x_78,y_0,w_2841,h_3000/fill/w_123,h_130,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/Diyi_Yang_edited.jpg)
Diyi Yang
Assistant Professor
Stanford University
​
![Ryan Cotterell_edited.jpg](https://static.wixstatic.com/media/9b9d14_4fdd8cd2885344388e990f1fde5ad7c1~mv2.jpg/v1/crop/x_1,y_0,w_177,h_177/fill/w_125,h_125,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/Ryan%20Cotterell_edited.jpg)
Ryan Cotterell
Assistant Professor of Computer Science
ETH Zürich
![MinerviniPasquale_edited.jpg](https://static.wixstatic.com/media/9b9d14_5262c50c2b804cb7ab0eb40fbb07c852~mv2.jpg/v1/crop/x_8,y_0,w_284,h_300/fill/w_118,h_125,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/MinerviniPasquale_edited.jpg)
Pasquale Minervini
Lecturer in NLP
University of Edinburgh, UCL
![Stephen Clark_edited.jpg](https://static.wixstatic.com/media/9b9d14_214eaeb45c304dc0aca9ccf3dc535eca~mv2.jpg/v1/fill/w_125,h_125,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/Stephen%20Clark_edited.jpg)
Stephen Clark
Head of AI
Quantinuum,
ML x FUNDAMENTALS
![yalidu_edited.jpg](https://static.wixstatic.com/media/9b9d14_a947975d3118412fb3dc4ec061ee9ad4~mv2.jpg/v1/crop/x_49,y_0,w_871,h_909/fill/w_110,h_115,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/yalidu_edited.jpg)
Yali Du
Lecturer in AI
King's College London
​
![Haitham.jpeg](https://static.wixstatic.com/media/9b9d14_7e960ed7477347ae9ee06649c1263ad6~mv2.jpeg/v1/crop/x_87,y_44,w_212,h_222/fill/w_110,h_115,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/Haitham.jpeg)
Haitham Bou Ammar
RL Team Leader
Huawei Research
​
![M Zimmer](https://static.wixstatic.com/media/9b9d14_7ebed3df2aa747fda48df59c9470c08d~mv2.jpg/v1/crop/x_14,y_0,w_571,h_605/fill/w_115,h_122,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/M%20Zimmer.jpg)
Matthieu Zimmer
Senior Research Scientist
Huawei
![Rasul Tutunov](https://static.wixstatic.com/media/9b9d14_f0fce2344e8944988141417d14fb5dc5~mv2.png/v1/crop/x_0,y_82,w_600,h_635/fill/w_115,h_122,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/Rasul%20Tutunov.png)
Rasul Tutunov
Research Scientist
Huawei​
![citations_edited.jpg](https://static.wixstatic.com/media/9b9d14_c332aa95270b42d09beab0b739436926~mv2.jpg/v1/crop/x_7,y_0,w_242,h_256/fill/w_115,h_122,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/citations_edited.jpg)
Eduardo C. Garrido-Merchán
Research Scientist
Universidad Pontificia Comillas
ML x CASES
![Khémon BEH_edited.jpg](https://static.wixstatic.com/media/9b9d14_88d31e6a41324c1e9d924edaec9e99e3~mv2.jpg/v1/crop/x_12,y_0,w_401,h_426/fill/w_115,h_122,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/Kh%C3%A9mon%20BEH_edited.jpg)
Khémon BEH
Founder & CEO
Quickscale.ai
​
![Vincent_edited.jpg](https://static.wixstatic.com/media/9b9d14_41000ed006104379bb71515ff9000376~mv2.jpg/v1/crop/x_44,y_0,w_756,h_756/fill/w_125,h_125,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/Vincent_edited.jpg)
Vincent Moens
Research Engineer,
Meta​
MLx FUNDAMENTALS
8-10 May | Online
​
MLx CASES
June 2023​ | Online
![communication-4871245_1920_edited.jpg](https://static.wixstatic.com/media/9b9d14_bdd4eb464c2b492f92b4d8c6aaa7104d~mv2.jpg/v1/fill/w_588,h_196,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/9b9d14_bdd4eb464c2b492f92b4d8c6aaa7104d~mv2.jpg)
MLx Fundamentals:
Based on the success of previous years' program, and in order to provide all participants with the necessary background -- particularly for those who are new to the theory and fundamentals of modern ML -- during this module, we aim to provide everyone with training in the following topics:
-
Linear Algebra and Mathematics of machine learning
-
Optimisation
-
Fundamentals of statistical / probabilistic ML
-
Fundamentals of representation / deep learning
-
and more
​
MLx Cases:
The aim of ML x Cases track is to provide you with a training on real-world issues and processes related to ML development/implementation process. This will range from efficient and repeatable approaches to data collection, enrichment and cleaning, and labelling, to transfer learning use cases of pre-trained SOTA models and their fine-tuning to achieve good performance on a domain-specific task. We will run ~5 different cases, led by experienced ML / data scientists, supported by TAs to help make the sessions interactive.
At the end of the ML x Cases, participants will learn useful concepts on:
​
-
Frame a problem as an ML problem
-
Leveraging appropriate toolboxes
-
Knowing which approach typically works best depending on the types of use cases
-
Defining what performance metrics to choose
-
Experimental setups for a performant model, while tracking and documenting experiments with MLFlow
-
Forming a naive baseline to more sophisticated experiments
-
Interpreting model results (e.g., under/overfitting and ways to remediate it).
-
Feedback loops and allowing the system to collect information from user inputs.
-
and more
​
MLx FINANCE &
NLP
8-11 July, 2023
Oxford Mathematical Institute & Online
![Stock Market Down](https://static.wixstatic.com/media/9c4cf3368907463db046286699994311.jpg/v1/fill/w_380,h_285,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/9c4cf3368907463db046286699994311.jpg)
Building on the topics covered in ML fundamentals module, the Finance module will continue and cover the following topics:
​
-
Statistical / probabilistic ML (e.g., Bayesian ML, Gaussian processes, approximate inference, modelling uncertainty, learning from large data, ...)
-
Advanced topics in representation learning (e.g., learning with no labels, representation learning in time series, text, and multi-modal data)
-
Natural language processing (e.g., large language models, multi-lingual NLP, sentiment/opinion mining, fact checking / false news, misinformation detection, ...)
-
Reinforcement learning
-
Knowledge graphs
-
Knowledge-aware ML
-
Symbolic reasoning
-
Neuro-symbolic AI
​
Applied talks on ML in/for:
-
Financial time series (e.g., standard models, Gaussian processes, representation learning, ...)
-
Building market simulators
-
Trading and hedging
-
Insurance, asset management, emerging risks
-
Financial inclusion and economic prosperity
-
ESG
-
...
-
Taking ML to the real-world settings (e.g., interpretability, ethics, ML Ops, ML products, ...)
-
And more
MLx HEALTH
13-16 July, 2023
![Brain Scans](https://static.wixstatic.com/media/11062b_603cd0210749470fa6715d513aa4c33b~mv2.jpg/v1/fill/w_558,h_314,al_c,q_80,usm_0.66_1.00_0.01,enc_avif,quality_auto/11062b_603cd0210749470fa6715d513aa4c33b~mv2.jpg)
Building on the topics covered in ML fundamentals module, the Health module will continue and cover the following topics:
​
-
Statistical / probabilistic ML (e.g., Bayesian ML, causal inference, approximate inference, modelling uncertainty, ...)
-
Advanced topics in representation learning (e.g., learning with little or nor supervision, self-supervised learning, multi-modal representation learning, ...)
-
Graph neural networks, and geometrical deep learning
-
Computer vision
-
Knowledge graphs
-
Knowledge-aware ML
-
Symbolic reasoning,
-
Neuro-symbolic AI
​
Applied talks on ML in/for:
-
EHR, imaging (e.g., brain, heart), genomics, multi-omics, ...
-
Chronic noncommunicable diseases, infectious diseases, oncology, ...
-
Drug discovery, and biopharma industry
-
Taking ML to the real-world settings (e.g., interpretability, ethics, ML Ops, ML products, ...)
-
And more